Master List of Formulas and Symbology Descriptions

Disclaimer: Here are some common formulas; however this is not an exhaustive list and you may not need all of them.

Video Camera Image Size

\[IS = 2 \times D \times \tan \left(\frac{A}{2} \right) \]

Where \(IS \) is the image size, \(D \) is the distance from the lens to the subject, and \(A \) is the lens angle of view.

Projector Lumens Output

\[Brightness = \frac{\left(L \times C \times A \right)}{Sg} \times \frac{1}{Dr} \]

Where \(L \) is ambient light at screen location, \(C \) is the desired contrast ratio, \(7:1 \) – Passive Viewing – television, \(15:1 \) – Basic Decision Making Presentations, \(50:1 \) – Analytical Decision Making – Art work, Medical, \(80:1 \) – Full Motion Video – Home Theater, \(A \) is the area of screen, \(Sg \) is the gain of the screen. Assume a screen gain of 1 unless otherwise noted, and \(Dr \) is the projector derating value. Assume a derating value of 0.75 unless otherwise noted.

* Light units are in either lux or footcandles
** area in square meters or square feet

Loudspeaker Coverage Pattern (Ceiling Mounted)

\[D = 2 \times (H - h) \times \tan \left(\frac{C_\angle}{2} \right) \]

Where \(D \) is diameter of coverage circle at ear height, \(H \) is overall ceiling height, \(h \) is height of the listener's ears (48 inches), \(C_\angle \) is off-axis coverage angle of polar pattern.

Loudspeaker Spacing (Ceiling Mounted)

\[D = 2 \times r \quad \text{(Edge-to-edge)} \]
\[D = r \times \sqrt{2} \quad \text{(Minimum overlap)} \]
\[D = r \quad \text{(Center-to-center)} \]

Where \(D \) is the distance between loudspeakers, \(r \) is the radius of loudspeaker coverage circle.

Wattage at the Loudspeaker

\[EPR = 10^{\left(\frac{L_P + H - L_S + 20 \log \left(\frac{D_2}{D_r} \right)}{10} \right)} \times W_{ref} \]

Where \(EPR \) is electrical power required at loudspeaker, \(L_P \) is SPL required at distance \(D_2 \), \(H \) is required headroom, \(L_S \) is loudspeaker sensitivity at 3.28 feet (1 m), \(D_2 \) is distance from loudspeaker to listener, \(D_r \) is distance reference value, and \(W_{ref} \) is the wattage reference value. Assume a wattage reference value of 1 unless otherwise noted.
Loudspeaker Impedance

\[Z_T = \frac{1}{\frac{1}{Z_1} + \frac{1}{Z_2} + \frac{1}{Z_3} + \ldots + \frac{1}{Z_N}} \]

Where:
- \(Z_T \) is the total impedance of the loudspeaker system.
- \(Z_1 \) is the measured impedance of a loudspeaker.
- \(N \) is the quantity of loudspeakers in the circuit.

Ohm's Law Related

\[I = \frac{P}{V} \]

Where:
- \(I \) is current.
- \(V \) is circuit voltage.
- \(P \) is power.

Look up amplifier power in owner's manual before adding to the other AV devices.

Needed Acoustic Gain

\[NAG = 20 \log \left(\frac{D_0}{EAD} \right) \]

Where:
- \(NAG \) is Needed Acoustic Gain.
- \(D_0 \) is distance from source to listener.
- \(EAD \) is Equivalent Acoustic Distance.

Potential Acoustic Gain

\[PAG = 20 \log \left(\frac{D_0 \cdot D_1}{D_2 \cdot D_S} \right) \]

Where:
- \(PAG \) is Potential Acoustic Gain.
- \(D_0 \) is distance from source to listener.
- \(D_1 \) is distance from loudspeaker to microphone.
- \(D_2 \) is distance from loudspeaker to listener.
- \(D_S \) is distance from source to microphone.

Audio System Stability (PAG NAG Complete Formula)

\[20 \log_{10} \left(\frac{D_0}{EAD} \right) < 20 \log_{10} \left(\frac{D_0 \cdot D_1}{D_2 \cdot D_S} \right) - 10 \log_{10}(NOM) - FSM \]

Where:
- \(NOM \) = Number of Open Microphones.
- \(FSM \) = Feedback Stability Margin.
- \(EAD \) = Equivalent Acoustic Distance.
- \(D_0 \) = the distance between the talker and the farthest listener.
- \(D_1 \) = the distance between the closest loudspeaker to the microphone and the microphone.
- \(D_2 \) = the distance between the loudspeaker closest to the farthest listener and the farthest listener.
- \(D_S \) = the distance between the sound source (talker) and the microphone.

Power Amplifier Wattage (Constant Voltage)

\[W_t = W \cdot N \cdot 1.5 \]

Where:
- \(W_t \) is required wattage.
- \(W \) is watt tap used at individual loudspeaker.
- \(N \) is total number of loudspeakers.
- 1.5 is 50 percent amplifier headroom.

Power Amplifier Heat Load

\[Total \ BTU = W \cdot 3.4 \cdot (1 - E_D) \]

Where:
- \(Total \ BTU \) is the total British Thermal Units released.
- \(W \) is the wattage of the amplifier.
- \(E_D \) is the efficiency of the device.
Heat Load

\[Total \ BTU = W_E \times 3.4 \]

Where Total BTU is the total British Thermal Units released

\[W_E \] is the total watts of equipment in the room

Jam Ratio

\[JAM = \frac{ID}{\left(\frac{OD_1 + OD_2 + OD_3}{3}\right)} \]

Where ID is the inner diameter of the conduit

OD is the outer diameter of each conductor

Conduit Capacity

Where ID is the inner diameter of the conduit

OD is outer diameter of each conductor

\[ID > \sqrt{\frac{OD^2}{0.53}} \quad \text{One Cable} \]

\[ID > \sqrt{\frac{OD^2 + OD^2}{0.31}} \quad \text{Two Cables} \]

\[ID > \sqrt{\frac{OD^2 + OD^2 + OD^2}{0.40}} \quad 3+ \text{Cables} \]

Image Height to Farthest Viewer Distance Ratio

The relationship between image height, viewing task, and farthest viewer distance can also be represented as a wheel:

\[\frac{IH}{ID} = \frac{DT}{VT} \]

Where \(IH \) = Image height

\(ID \) = Distance from the farthest viewer to the image

\(VT \) = Viewing Task Ratio: distance

4 for Inspection Viewing Tasks

6 for Reading with Clues Viewing Tasks

8 for General Viewing Tasks

\(DT \) = Viewing task: height ratio. This will be 1.

Computer Video Signal Bandwidth

\[HF = \frac{H_{pix} \times V_{pix} \times f_v}{2} \times 3 \]

Where \(HF \) is the highest frequency in Hertz

\(H_{pix} \) is the total number of horizontal pixels

\(V_{pix} \) is the total number of vertical pixels

\(f_v \) is the refresh rate

Minimum Video System Bandwidth

\[SF = HF \times 2 \]

Where SF is the system frequency in Hertz

\(HF \) is the highest frequency in Hertz of the computer signal